Designing inhibitors of anthrax toxin.

نویسندگان

  • Ekaterina M Nestorovich
  • Sergey M Bezrukov
چکیده

INTRODUCTION Present-day rational drug design approaches are based on exploiting unique features of the target biomolecules, small- or macromolecule drug candidates and physical forces that govern their interactions. The 2013 Nobel Prize in chemistry awarded 'for the development of multiscale models for complex chemical systems' once again demonstrated the importance of the tailored drug discovery that reduces the role of the trial-and-error approach to a minimum. The intentional dissemination of Bacillus anthracis spores in 2001 via the so-called anthrax letters has led to increased efforts, politically and scientifically, to develop medical countermeasures that will protect people from the threat of anthrax bioterrorism. AREAS COVERED This article provides an overview of the recent rational drug design approaches for discovering inhibitors of anthrax toxin. The review also directs the readers to the vast literature on the recognized advances and future possibilities in the field. EXPERT OPINION Existing options to combat anthrax toxin lethality are limited. With the only anthrax toxin inhibiting therapy (protective antigen-targeting with a monoclonal antibody, raxibacumab) approved to treat inhalational anthrax, the situation, in our view, is still insecure. Further, the FDA's animal rule for drug approval, which clears compounds without validated efficacy studies on humans, creates a high level of uncertainty, especially when a well-characterized animal model does not exist. Better identification and validation of anthrax toxin therapeutic targets at the molecular level as well as elucidation of the parameters determining the corresponding therapeutic windows are still necessary for more effective therapeutic options.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyvalent inhibitors of anthrax toxin that target host receptors.

Resistance of pathogens to antimicrobial therapeutics has become a widespread problem. Resistance can emerge naturally, but it can also be engineered intentionally, which is an important consideration in designing therapeutics for bioterrorism agents. Blocking host receptors used by pathogens represents a powerful strategy to overcome this problem, because extensive alterations to the pathogen ...

متن کامل

Protection from anthrax toxin-mediated killing of macrophages by the combined effects of furin inhibitors and chloroquine.

Cell surface proteolytic processing of anthrax protective antigen by furin or other furin-related proteases is required for its oligomerization, endocytosis, and function as a translocon for anthrax lethal and edema factors. Countering toxin lethality is essential to developing effective chemotherapies for anthrax infections that have proceeded beyond the stage at which antibiotics are effectiv...

متن کامل

پیش‌بینی برهمکنش بین ترکیبات موجود در بره‌موم زنبور عسل و بخش آنتی‌ژن حفاظت‌کننده موجود در سم سیاه زخم با استفاده از نرم‌افزارهای بیوانفورماتیک

Background: Protective antigen of anthrax toxin, after touching the cell receptors, plays an important role in the pathogenesis of toxin. The purpose of this study was to investigate the interaction of anthrax toxin protective antigen and four great combination propolis included caffeic acid, benzyl caffeate, cinnamic acid and kaempferol using the softwares and bioinformatics web servers. ...

متن کامل

Tumor Endothelium Marker-8 Based Decoys Exhibit Superiority over Capillary Morphogenesis Protein-2 Based Decoys as Anthrax Toxin Inhibitors

Anthrax toxin is the major virulence factor produced by Bacillus anthracis. The toxin consists of three protein subunits: protective antigen (PA), lethal factor, and edema factor. Inhibition of PA binding to its receptors, tumor endothelium marker-8 (TEM8) and capillary morphogenesis protein-2 (CMG2) can effectively block anthrax intoxication, which is particularly valuable when the toxin has a...

متن کامل

Recombinant HSA-CMG2 Is a Promising Anthrax Toxin Inhibitor.

Anthrax toxin is the major virulence factor produced by Bacillus anthracis. Protective antigen (PA) is the key component of the toxin and has been confirmed as the main target for the development of toxin inhibitors. The inhibition of the binding of PA to its receptor, capillary morphogenesis protein-2 (CMG2), can effectively block anthrax intoxication. The recombinant, soluble von Willebrand f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert opinion on drug discovery

دوره 9 3  شماره 

صفحات  -

تاریخ انتشار 2014